____________________________________
Industrial Liaison Group:
Tel: +44 (0) 1235 778797
E-mail: industry@diamond.ac.uk
Unravelling the chemical and electronic properties of compounds is a real challenge due to chemical heterogeneity, sample nature and sensitivity to various conditions (gas flow and composition, temperature, pressure). Operando studies on chemical processes is crucial to design new reactions and manufacturing processes and it provides fundamental insights into the science of chemistry.
Diamond provides specialist analytical techniques and a wide range of sample environments to make complete characterisations of various materials at different physical states and understand structure-function relationships.
Below are some examples of how these techniques have been applied.
Zinc oxide (ZnO) is a highly desirable multifunctional material possessing superior electronic, structural and morphological properties which also exhibits high chemical stability, a broad range of radiation absorption and high photostability. For this reason, ZnO is used in n-type semiconductors, solar cells, photocatalysts, sensing materials and antiseptic additive compounds.
Many believe that the defects present in ZnO’s structure are a key factor in influencing aspects of its performance and control of specific defect types could be used to enhance its functionality.
Over recent years we have seen a global move towards renewable energy not only to support increased demand for energy but also to reduce the production of carbon dioxide, a common pollutant from burning fossil fuels. Engineers and scientists are continually looking at ways to store this energy during periods of low user consumption (day-time) and to maximise its usage during periods of high demand (evening-time).
Read more...Effective lubrication has a significant impact on a number of applications ranging from human artificial joint implants to energy efficiency of internal combustion engines and the reliability of offshore wind turbine gearboxes. At low running speeds and high contact pressures the fluid film cannot be maintained and therefore effective lubrication is greatly influenced by the presence of chemical additives in the lubricant. These additives interact with the lubricated surfaces to form nanoscale tribofilms that reduce both material wear and energy losses due to friction. Understanding the mechanisms by which these tribofilms form is essential for development and optimisation of the next generation environmentally friendly effective lubricants, materials and tribological systems.
Read more...Platinum group metals play a crucial role in a variety of applications and in particular for a host of catalytic applications. The largest application is currently in vehicle emission control (VEC) catalysts to efficiently reduce particulate matter, CO, NOx and hydrocarbons. This type of catalytic system is diverse and complex and generally contains 0.1-1 wt% active metal deposited on a thermally stable structural support. Therefore, applying a wide range of techniques is essential to fully understand these complex catalytic materials.
Read more...A proper understanding of structure-property relationships plays a central role in the design and discovery of novel materials. In many cases, exploring the relationship between the structure of a new material and its physical and chemical properties requires that measurements are carried out under exactly the same in situ conditions of temperature, pressure and atmosphere as the performance environments of the material of interest.
Read more...The “freezing” of diesel fuel in winter has been a problem since its inception. Wax crystals nucleate and grow and block fuel lines and filters which can lead to vehicle failures and motorists being stranded. Additives are used to control these crystals but, over recent years, the use of biofuels (fatty acid methyl esters) within diesel blends has become increasingly common. This can adversely affect the low temperature operability of the fuel. Legislation demands that biofuels are part of diesel blends throughout the EU, with levels expected to increase.
Read more...Catalytic production of methanol is an industrially important process and this high-energy density liquid is widely used in the manufacture of plastics and synthetic fibres, and in fuel cells. Currently, methanol is synthesized on a large scale using natural gas from an energy-inefficient process, which requires an endothermic, and therefore thermally intensive, step to completely break down the methane to CO/H2 before methanol can be formed. Scientists from the University of Oxford were keen to explore an alternative non-syn-gas route for methanol production utilising ethylene glycol (EG) which can be sourced from biomass.
Read more...Using current technologies, it is possible to store and transport hydrogen as a liquid at very low temperatures, or a gas under very high pressure, but both of these have serious implications for weight, cost and safety. Metal-organic frameworks (MOFs) are extended molecular structures constructed from metal cations linked by organic molecules. They have recently shown considerable promise in a wide range of applications, including hydrogen storage, catalysis and drug delivery.
Read more...Diamond Light Source is the UK's national synchrotron science facility, located at the Harwell Science and Innovation Campus in Oxfordshire.
Copyright © 2022 Diamond Light Source
Diamond Light Source Ltd
Diamond House
Harwell Science & Innovation Campus
Didcot
Oxfordshire
OX11 0DE
Diamond Light Source® and the Diamond logo are registered trademarks of Diamond Light Source Ltd
Registered in England and Wales at Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom. Company number: 4375679. VAT number: 287 461 957. Economic Operators Registration and Identification (EORI) number: GB287461957003.